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Abstract

These notes summarize the Mapper algorithm of [Singh et al., 2007]
and its analysis as found in [Carrière et al., 2018]. They are to help me
organize my thoughts with regard to the algorithm itself, as well as help me
acquaint myself with its uses. Note: These notes were written primarily
for myself, and may contain errors.

1 Introduction

The Mapper algorithm [Singh et al., 2007] is an algorithm designed for the ex-
traction of global features from high-dimensional data. It enables the simple
descriptions of point clouds as simplicial complexes, abstracting away from ex-
act distances/angles, and even individual data points. The output of Mapper
is a simplicial complex which provides a compact, global representation of the
data. These notes are broken into three parts: mathematical preliminaries, the
algorithm itself, and then practical application. In the first part, consisting of
sections 2 and 3, I review the preliminary mathematical notions underpinning
the algorithm, as well as some material necessary to analyze it. The second part,
consisting of Sections 4 and 5, describes the algorithm itself, mostly following
the presentation in [Chazal and Michel, 2017], and then summarizes key points
in the analysis of [Carrière et al., 2018]. The third part consists of Section 6,
and provides a brief example of Mapper in practice.

2 Preliminary Mathematical Definitions: Algo-
rithm

This section lists definitions for the mathematical concepts involved in the Map-
per algorithm.

Definition 1. Given a set of k+ 1 affinely independent points X = {x0, ..., xk},
the k-dimensional simplex σ = [x0, ..., xk] spanned by X is the convex hull of
X. The points xi ∈ X are the vertices of σ, and the simplices spanned by the
subsets of X are the faces of σ.

Definition 2. Given a vertex set V, the abstract simplicial complex K is a set
of finite subsets of V, its simplices. For any σ ∈ K, any subset of σ also belongs
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to K. The dimension of an abstract simplicial complex is the dimension of its
highest-dimension simplex.1

Definition 3. Given subset A of topological space (X , T )2, an open cover of
A with indexing set I is a subset U =

⋃
i∈I Ui, Ui ⊆ T , such that A ⊆ U . That

is, an open cover of a subset of a topological space is a family of open sets in
that topological space such that the subset is contained in the union of those
open sets.

Definition 4. Given a cover U =
⋃

i∈I Ui of some topological space, the nerve
of U is the abstract simplicial complex KU whose vertices are the Ui’s, and

whose simplices are given by σ = [Ui0 , ..., Uik ] ∈ KU iff
k⋂

j=0

Uij 6= ∅. That is, the

simplices are the subsets of U with non-empty intersection.

Definition 5. Given continuous function f : X → Rd and open cover U =⋃
i∈I Ui of Rd, the pull-back cover of X with respect to (f,U) is the collection

of open sets (f−1(Ui))i∈I . The refined pull-back is the collection of connected
components of the pull-back cover.3

3 Preliminary Mathematical Definitions: Anal-
ysis

This section lists definitions for the mathematical concepts involved in analyzing
the Mapper algorithm.

Definition 6. Let X be a topological space and let f : X → R be a continuous
function, here called a filter. Define the equivalence relation ∼f as follows: for
all x, x′ ∈ X , x ∼f x′ iff x, x′ belong to the same connected component of
f−1(y) for some y ∈ f(X ). The Reeb graph Rf (X ) of X computed with f is
then the quotient space X/ ∼ endowed with the quotient topology.4

Definition 7. Let f be a continuous real-valued function defined on compact
space X 5. Then f is Morse-type if it meets the following criteria.

1Given an abstract simplicial complex, one can embed it in a sufficiently high-dimensional
Euclidean space so as to realize a geometric simplicial complex, assuming the embedding
follows certain constraints. Geometric simplicial complexes are unnecessary for understanding
the Mapper algorithm, and as such will not be defined here.

2I have other notes which define topological spaces, and many other basic notions from
point-set topology.

3The refined pull-back cover is a subcover of the pull-back cover, making it also a refinement
of the pull-back cover in the formal sense, hence its name.

4Given topological space X and equivalence relation ∼ on (X , T ), one defines the quotient
topology as the pair (X ′, T ′) where X ′ is defined as the set of all equivalence classes [x] =
{y ∈ X | x ∼ y}, and set U ′ ∈ T ′ iff U ∈ T , where U =

⋃
[x]i∈U′

[x]i, the union of the members

of the equivalence classes in U ′.
5This amounts to saying it is closed and bounded since we’re dealing with Euclidean space.
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1. There is a finite set Crit(f) = {a1, ..., an} called the set of critical values,
s.t. over every open interval (a0 = −∞, a1), ..., (ai, ai+1), ..., (an, an+1 =
∞), there is a compact and locally connected space Yi and homeomor-
phism µi : Yi×(ai, ai+1)→ f−1((ai, ai+1)) s.t. ∀i = 0, ..., n, f |f−1((ai,ai+1)) =

π2 ◦ µ−1i , where π2 is projection onto the second factor.

2. ∀i = 1, ..., n− 1, µi extends to a continuous function µ̄i : Yi × [ai, ai+1]→
f−1([ai, ai+1]), and similarly µ̄0 : Y0 × (−∞, a1] → f−1((−∞, a1]) and
µ̄n : Yn × [an,∞)→ f−1([an,∞))

3. Each level set has a finitely generated homology.

NB: This definition alone is highly unintuitive without at least a passing
knowledge of Morse theory. In essence, a Morse-type function f is one which
allows us to recover topological structure of the space on which it is defined.
See https://www.youtube.com/watch?v=78OMJ8JKDqI for a good crash-course
introduction to Morse theory; I will have notes on this in the (near?) future.

Definition 8. Given any graph G = (V,E) and a function defined on its nodes
f : V → R, the Extended Persistence Diagram Dg(G, f) is a multi-set of points
in R2 that is computed with extended persistence theory [Oudot, 2015]. Each
point in the diagram has one of four specific types: Ord0, Rel1, Ext+0 , Ext−1 .6

Definition 9. Given two (extended) persistence diagrams D,D′, the bottleneck
distance between them is:

W∞(D,D′) := inf
ϕ:D→D′

sup
p∈D
‖p− ϕ(p)‖q

where ϕ ranges over bijections from D to D′.7

Using W∞ to denote bottleneck distance reflects the fact that bottleneck
distance is in fact a special case of the Wasserstein distance. Though here the
bottleneck distance is defined on diagrams, below I write W∞(X,Y ), where
X,Y are spaces, as a shorthand to denote W∞(Dg(X, f), Dg(Y, g)).

In words, the bottleneck distance is measured as the maximum distance
between matching points (i.e. p, ϕ(p)) under the optimal bijection.

Definition 10. A modulus of continuity is a function ω : R+ → R+ s.t.

1. ω(0) = 0.

2. ω is monotonically non-decreasing.

3. ω is sub-additive, i.e. ω(x+ y) ≤ ω(x) + ω(y).

6This is not enough background to understand this. In short, extended persistence provides
a means of describing (some of the) topological structure of a space by means of points in the
plane. An explanation of (extended) persistence will follow in future notes.

7To D and D’, we add infinitely many points on the diagonal, each with infinite multiplicity;
this allows us to define bijections ϕ when in general D and D′ have different cardinalities
[Chazal et al., 2016].
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4. ω is everywhere continuous.

A modulus of continuity for a function f : X → R is a modulus of continuity
which in addition satistifies the following:

|f(x)− f(x′)| ≤ ω(‖x− x′‖)
for any x, x′ ∈ X . This essentially defines an upper bound on how quickly values
can change in the co-domain relative to the domain.

Definition 11. Given two metric spaces (X, ρX), (Y, ρY ), function f : X → Y is
Lipschitz Continuous if there exists a real constant K ≥ 0 s.t. for all x, x′ ∈ X,

ρY (f(x), f(x′)) ≤ KρX(x, x′)

K here is referred to as a Lipschitz constant, with the smallest such K
being referred to as the Lipschitz constant. Such a function f is bounded in
how fast values in the co-domain can change relative to values in the domain.
Given a Lipschitz constant K for function f , one says that function f is K-
Lipschitz, and one can define a modulus of continuity for f by ω(∆) = K∆,
where ∆ = ‖x− x′‖, x, x′ ∈ X.

Definition 12. Hausdorff distance is a distance metric over non-empty compact
subsets of a metric space. It is defined in the following way:

dH(X,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}

In words, given subsets non-empty compact subsets X,Y ⊂ M , where M
is a metric space with metric d, the Hausdorff distance between X and Y is
measured such that it takes the maximum of the largest distances in the sets of
closest pairwise distances between X and Y . See [Chazal and Michel, 2017] for
a more detailed discussion, as well as intuitive illustrations.

4 Algorithm

The following is the algorithm for Mapper as shown in [Chazal and Michel, 2017].

Input: data set X, function f : X→ Rd, cover U =
⋃
i∈I

Ui of image f(X)

(1) For each U ∈ Ui, cluster f−1(Ui) into kUi clusters CUi,1 , ..., CUi,kUi

(2) CUi,1 , ..., CUi,kUi
for each Ui ∈ U now define a cover of X; calculate

the nerve of this cover
Output: Simplicial complex with vertex set vUi

for each cluster CUi
,

edge between vUi and vU ′j iff CUi ∩ CU ′j
6= ∅

Algorithm 1: The Mapper Algorithm

The algorithm as described here is quite succinct. In words, step (1) clusters
the preimage of f−1(Ui) = XUi

⊆ X for each Ui ∈ U . It’s worth noting that
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certain implementations of Mapper give one the option of clustering either the
points in the original space or the projected space. This results in kUi clusters for
each Ui, which represent the vertices in the output. Each cluster CUi

represents
a connected component in f−1(U) (see definition 5 above). In step (2), if the
intersection of any group of clusters is non-empty, the simplex consisting of
the representative vertices of these clusters is added to the output simplicial
complex. This simplicial complex is the final result of the algorithm, providing
a high-level, combinatorial description of the data set.

For the purposes of analysis, [Carrière et al., 2018] define Mapper in a slightly
different manner. Here, Mapper is in essence a statistical version of the Reeb
graphRf (X ) computed with some filter f . Assume point-cloud Xn = {x1, ..., xn}
⊂ X with known pairwise distances. Then one computes the Mapper algorithm
on Xn with filter f̂ (which is either f or some approximation of f) in the fol-
lowing way.

Input: dataset Xn, function f̂ : Xn → R, r ∈ R, g ∈ (0, 0.5), δ ∈ R+

(1) Compute δ-neighborhood graph on Xn.

(2) Compute Yn = f̂(Xn), the one dimensional image of Xn under f̂ .
(3) Define a cover of Yn with a set of consecutive intervals {Is}1≤s≤S ,
where each interval is of length r and consecutive intervals overlap
with proportion g.

(4) Clustering of f̂−1(Is) is done by taking the connected components
induced by the δ-neighborhood graph. The combined clusterings for
each f̂−1(Is) now define a cover of Xn.

Output: The nerve of the cover defined in (4).

The output of Mapper(Xn, f̂ , r, g, δ) is then an approximation of Rf (X ).

5 Analysis of Mapper

The high-level purpose of [Carrière et al., 2018] is to produce upper bounds on
the dissimilarity between a Reeb graph Rf (X ) and its Mapper approximation

Mapper(Xn, f̂ , r, g, δ), as well as providing effective parameter choices for r, g,
and δ with theoretical guarantees under multiple scenarios.

5.1 Upper Bounds

The means of comparing Reeb graphs with their Mapper approximations is
comparing their extended persistence signatures. Specifically, for Morse-type
function f on X we can consider Dg(Rf (X )) = Dg(Rf (X ), fR), where fR :
Rf (X ) → R s.t. f = fR ◦ π, where π is the quotient map X → Rf (X ). For a
Mapper approximation Mn calculated on Xn ⊂ X , we can consider Dg(Mn) =
Dg(Mn, fI), where fI is a function on the nodes of v of graph Mn s.t. if v
represents a connected component in the preimage of Is, then fI(v) = mid(Ĩs),
where Ĩs = Is\(Is−1 ∪ Is+1) and mid(Ĩs) denotes the midpoint of the interval
Ĩs.

5



The following then is Theorem 7 presented in [Carrière et al., 2018].

Theorem 1. Assume that X has positive reach rch and convexity radius ρ.8

Let Xn be a point-cloud of n points drawn from X , and assume filter f is Morse-
type on X , with ω being a modulus of continuity for f . Finally let r, g, and
δ be parameters of Mapper as defined above. Then if the following conditions
hold:

1. δ ≤ 1
4min{rch, ρ}

2. max{| f(x)− f(x′)| : x, x′ ∈ Xn, ‖x− x′‖ ≤ δ} < gr

3. 4dH(X ,Xn) ≤ δ

where dH denotes the Hausdorff distance, then the Mapper(Xn, f, r, g, δ) is s.t.

W∞(Rf (X ),Mn) ≤ r + 2ω(δ)

It stands to reason that approximation error would be constrained by reso-
lution (as modulated by r) and f ’s regularity (as bounded by ω). Specifically, it
is clear that given sufficiently dense sampling, the finer the resolution in the co-
domain the better the approximation will be. The same is true of ω, which one
will recall represents an upper bound on how quickly values in the co-domain
change relative to the domain. The lower this value, the more “well-behaved”
f is and the better the approximation will be.

Foruntanately for the sake of analysis, many of the filters commonly used
for f in practice are Lipschitz, i.e. one can define for f a modulus of continuity
ω(∆) = K∆ for positive constant K. For example, PCA projections and coor-
dinate filters (i.e. projecting directly onto coordinates) are both 1-Lipschitz.9

In many instances in practice, one will have to approximate the filter func-
tion. While not the case in, say, coordinate projection, in cases where the filter
is estimated from data (e.g. PCA or regression estimators) one gets slightly
different theoretical guarantees. In this case, if the following hold:

1. δ ≤ 1
4min{rch, ρ}

2. max{max{|f(x)− f(x′)|, |f̂(x)− f̂(x′)|} : x, x′ ∈ Xn, ‖x− x′‖ ≤ δ} < gr

3. 4dH(X ,Xn) ≤ δ

then the following upper bound holds:

W∞(Rf (X ),Mn) ≤ 2r + 2ω(δ) +max
x∈Xn

|f(x)− f̂(x)|

Note that the first and third conditions are the same as above when f was
known exactly, and the second simply takes the maximum difference of images
between true filter f and approximation f̂ for points no further away than δ in
the domain, stating that this value is less than gr.

8These quantities serve to measure the curvedness of a space.
9Moduli of continuity for filter functions such as regression estimators are also well defined,

if less obvious.
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5.2 Parameter Selection

Recall that the mapper algorithm has many parameters, specifically filter f̂ ,
interval length r, proportion of overlap g, and neighborhood parameter for
graph construction δ. [Carrière et al., 2018] provide means of inferring effec-
tive parameters under three scenarios: (i) known filter and generative model,
(ii) known filter but unknown generative model, and (iii) unknown filter and
unknown generative model.

In practice, we often estimate the filter through some dimensionality re-
duction algorithm such as PCA, and the generative model is likewise unknown
exactly. As such, scenario (iii) is the most pertinent, and I will content myself
to explain parameter estimation under this scenario.

At first glance, the prospect of inferring effective parameter choices for δ, r,
and g in a principled fashion seems hopeless, as we don’t have direct access to
the true f . Nonetheless, we may still calculate meaningful parameter estimates
if we know the type of function that f is. For instance, if f is PCA, then
even though we can only infer f with f̂ through a finite dataset, we still know
that PCA projectors are 1-Lipschitz, and as such we can define a modulus of
continuity for them.

Let V̂n(δn) = max{|f̂(x) − f̂(x′)| : x, x′ ∈ Xn, ‖x − x′‖ ≤ δn}, and let ω be
a modulus of continuity for f . Then the following provide principled estimates
for parameters such that theoretical guarantees exist.

g ∈ (
1

3
,

1

2
),The choice of which is arbitrary

δn = dH(X̂sn
n ,Xn), Where dH is Hausdorff distance

rn =
max{ω(δn), V̂n(δn)}

g

Here, X̂sn
n denotes a sample of size sn taken from Xn.

6 Exploring a HD dataset

This section details a brief experiment designed to better acquaint myself with
Mapper and one of its implementations. In this experiment, I will generate low-
dimensional data of a familiar shape, embed it into a high-dimensional space,
and attempt to recapture the shape using Mapper. I will actually be aware of
the generative model in this case, but will pretend as if I don’t for parameter
estimation.

I will try two different ways of estimating parameters. The first will be
the principled method of [Carrière et al., 2018], and the second will be by grid-
search, where evaluation will take place via comparing persistence diagrams.
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6.1 Data Generation

For data generation, I’ve used sklearn’s make-blobs and make-circs functions to
generate the data, and used tadasets’ embed function to embed the data in R2

into R100. Before embedding, the data can be visualized as follows.

We see that ideally the returned Mapper estimate will have four connected
components, with one loop.10

6.2 Implementation and Output

To estimate the topology of the dataset, I’ve estimated the parameters via the
method of [Carrière et al., 2018] using the Kepler-Mapper package [van Veen and Saul, 2019].
The following was the result.

10There would be two loops if the make-circles data were more spread out.
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Here, the data generated by the circles is in blue, and the blobs in red. It
can be seen that other than a stray red node, Mapper has roughly inferred the
correct topology of the data. There are four large-scale connected components,
and one loop.
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